

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO

DNC
TP12

Cátedra: ESTRUCTURAS - NIVEL III

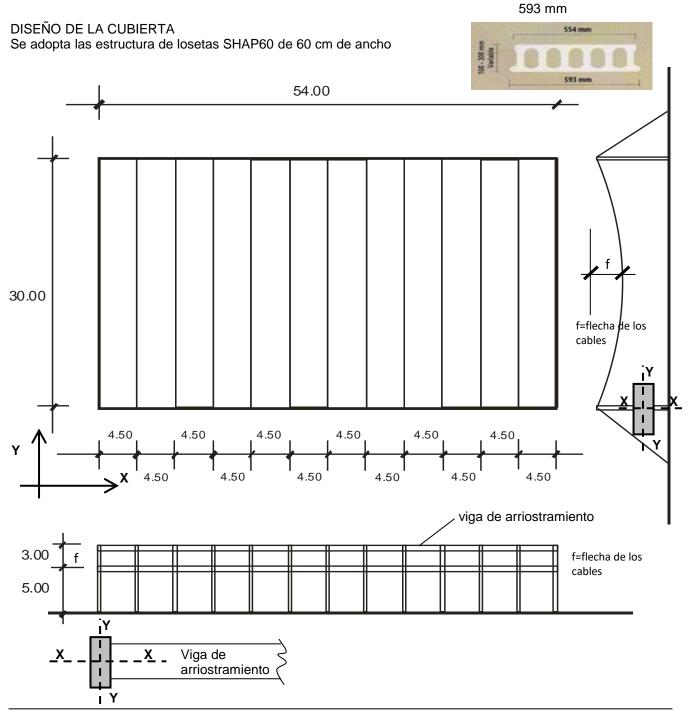
Taller Vertical I: DELALOYE - NICO - CLIVIO (DNC)

Trabajo Práctico 12: Estructuras de cables-Pesadas

Curso 2019 | Elaboró: JTP Ing. Angel Maydana

Revisión: Ing. Delaloye

Fecha: set 2019


ESTRUCTURA DE TRACCIÓN - PESADA

Predimensionar una cubierta pesada, de losetas premoldeadas colocadas sobre cables de tracción. La planta cubre las siguientes dimensiones: 30,00 x 54,00 m (1620 m²) con bajo factor de ocupación. Los cables se colocarán en el sentido de la luz menor y serán anclados a tierra.

La aislación hidráulica de la cubierta se resolverá con una capa de hormigón alivianado, que con un espesor de 0,26 m en el centro permitirá lograr una pendiente transversal (en el sentido de los 54,00 m) del 1%.

Las columnas serán de hormigón armado, de una altura de 8,00.

Deberá considerarse la acción del viento, en una zona poco construida.

ACCIÓN DEL VIENTO

Ver apuntes del Ing. Horacio Delaloye, en la página web del taller DNC

Ubicación: La Plata Velocidad de referencia: β = 28 m/s (Tabla Nº1) Coef. de seguridad: Cp = 1,45 (corresponde a bajo factor de ocupación)

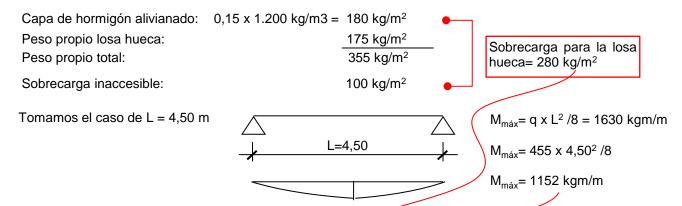
Velocidad básica de diseño: $Vo = \beta \times Cp = 28 \times 1,45 = 40,6 \text{ m/s}$

Presión dinámica básica: Qo = $0.0613 \times (Vo)^2$ en kg/m² = $0.0613 \times (40.6)^2 = 101 \text{ kg/m}^2$

Coeficiente de altura y rugosidad del entorno: Cz = 0,673 (para $z \le 10$ m y rugosidad tipo II) Tabla Nº 4 Coeficiente de reducción dimensional: Cd = 0,75 (para b/h=54/8=6,75; Rugosidad II, h/Vo<0,5) Tabla 5

Presión dinámica de cálculo: $Qz = Cd \times Cz \times Qo = 0.75 \times 0.673 \times 101 = 51 \text{ kg/m}^2$ Coeficiente de forma: C = -0.8 - 0.4 = -1.2 (considerando grandes aberturas laterales)

Acción unitaria del viento sobre la estructura: $W = C \times Qz = -1.2 \times 51 = -61.2 \text{ kg/m}^2$ (succión)

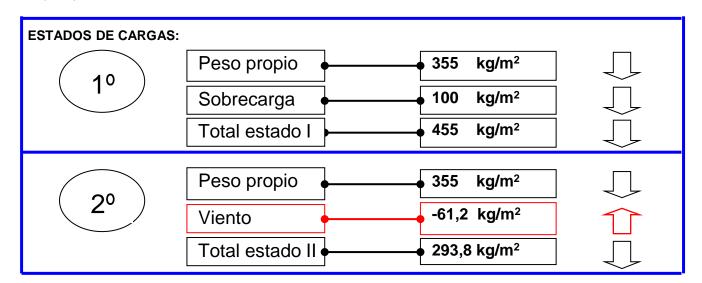

PESO PROPIO

Por razones de seguridad, el peso propio debe superar en 2,5 veces la succión del viento.

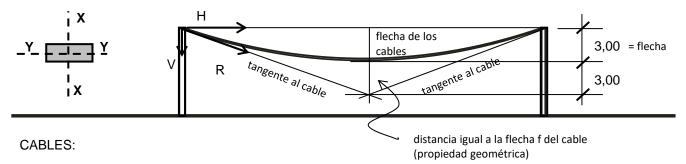
 $PP > 2.5 \times 61.2 = 153 \text{ kg/m}^2$ Adoptamos la loseta SHAP60-12, que pesa 175 kg/m²

El peso propio del hormigòn alivianado es de 1200 kg/m³ y el espesor promedio de la capa de nivelación puede tomarse como 0,15 m (entre 0,26 y 0,04 m)

El peso propio (180+175 kg/m²= 355 kg/m²) supera el mínimo exigido por seguridad de 153 kg/m²



Losa Hueca Pretensada SHAP 60/120. Luces libres máximas para apoyo simple (m)																					
Tipo	Espesor	Serie	Peso	Momento Flector	Sobrecarga/Total (de uso más permanente de contrapisos, cielorrasos,etc.) kg/m²																
				admisible	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500		
	cm		kg/m2	kgm/m			\searrow			Luces Libres Máximas ((m)						
LH60-10		1	3 160	394	3,38	2,86	2,52	2,27	2,09	1,94	1,81	1,71	1,62	1,55	1,48	1,42	1,37	1,32	1,28		
	10	2		590	4,16	3,52	3, 10	2,80	2,57	2,39	2,24	2,12	2,01	1,92	1,84	1,76	1,70	1,64	1,59		
	10	3		869	5,07	4,29	3,79	3,42	3,15	2,92	2,74	2,59	2,46	2,35	2,25	2,16	2,08	2,01	1,95		
		4		1174	5,91	5,01	4 2	4,00	3,67	3,42	3,20	3,03	2,88	2,75	2,63	2,53	2,44	2,35	2,28		
LH60-12	12	1	175	971	5,21	4,45	3,94	3,58	3,29	3,07	2,88	2,72	2,59	2,47	2,37	2,28	2,19	2,12	2,05		
		2		1424	6,34	-5,4	4,80	4,35	4,01	3,73	3,51	3,32	3,16	3,01	2,89	2,78	2,68	2,59	2,51		
		3		1750	7,04	6,01	5,33	4,84	4,46	4,15	3,90	3,69	3,51	3,35	3,21	3,09	2,98	2,88	2,79		
		4		2175	7,86	6,71	5,95	5,40	4,98	4,64	4,36	4,12	3,92	3,75	3,60	3,46	3,34	3,22	3,12		
LH60-16	16	1	1 2 3 210	2484	7,91	6,86	6,14	5,61	5,19	4,85	4,57	4,34	4,13	3,95	3,79	3,65	3,53	3,41	3,31		
LH120-16		2		3136	8,90	7,72	6,91	6,31	5,84	5,46	5,15	4,88	4,65	4,45	4,28	4,12	3,98	3,85	3,73		
L11120-10		3		4418	10,58	9,18	8,22	7,51	6,96	6,51	6,13	5,82	5,54	5,30	5,09	4,91	4,74	4,59	4,45		
LH60-20 LH120-20	20	1	1	5049	10,64	9,37	8,47	7,78	7,24	6,79	6,42	6,10	5,83	5,58	5,37	5,18	5,00	4,85	4,70		
		20 2	20	2	250	5845	11,46	10,09	9,12	8,38	7,80	7,32	6,92	6,57	6,28	6,02	5,79	5,58	5,39	5,22	5,07
		3	3	6564	12,15	10,70	9,67	8,89	8,27	7,76	7,33	6,97	6,66	6,38	6,14	5,92	5,72	5,54	5,38		
LH60-24 LH120-24	24	1	1 2 3	7358	12,03	10,75	9,80	9,07	8,48	7,99	7,57	7,22	6,90	6,63	6,38	6,16	5,97	5,78	5,62		
		24 2		8346	12,82	11,46	10,45	9,67	9,04	8,51	8,07	7,69	7,36	7,07	6,81	6,57	6,36	6,17	5,99		
		3		9369	13,59	12,14	11,08	10,25	9,58	9,03	8,56	8,15	7,80	7,49	7,22	6,97	6,74	6,54	6,35		
LH60-26	26	1 345	10438	13,60	12,28	11,28	10,49	9,84	9,30	8,84	8,44	8,09	7,78	7,50	7,25	7,02	6,82	6,63			
		2	2 345	12329	14,79	13,35	12,27	11,41	10,70	10,12	9,62	9,18	8,80	8,46	8,16	7,89	7,64	7,42	7,21		
LH60-30	30	30 1 2	410	14800	15,14	13,83	12,81	11,99	11,31	10,73	10,23	9,79	9,41	9,06	8,75	8,48	8,22	7,99	7,77		
				16910	16,19	14,79	13,70	12,82	12,09	11,47	10,94	10,47	10,06	9,70	9,37	9.07	8,79	8,55	8,32		


La tabla indica la sobrecarga que admite la losa hueca, ya descontado el peso propio.

En nuestro caso tenemos que considerar como sobrecarga a la parte de la capa de nivelación (180 kg/m2), que si bien es una carga permanente, es sobrecarga para el fabricante de la losa; más la sobrecarga accidental que la evaluamos en 100 kg/m2. Total 280 kg/m2, y el momento flector de toda la carga incluido el peso propio de 1152 kgm/m. El fabricante dice que con estas condiciones la luz máxima libre entre apoyos es de 4,80 , lo cual verifica nuestro requerimiento.

La cantidad de losas huecas que entren en la dimensión en que van colocadas (en nuestro caso 54,00 m) se correspondan con un número entero de losas, por eso elegimos 4,50 m de longitud: 54,00/4,50 = 12 losetas.

Resolvemos solamente con el peso propio (caso más desfavorable por ser el de mayor solicitación), dado que el viento no afecta el sentido de las cargas.

Separación entre cables: 4,40 m (la losa hueca tiene 4,50 m y dejamos 5 cm a cada lado para apoyarla)

Carga en los cables: Qcables: 455 x 4,50 = 2047,5 kg/m

Solicitación horizontal: Hcables= 2047,5 x 30² / 8 x 3 = 76.781 kg

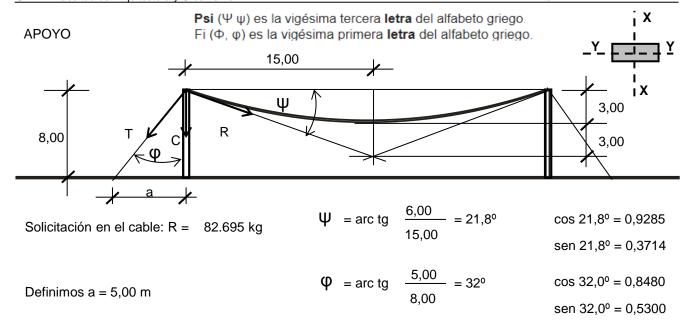
$$H = \frac{q \times L^2}{8 \times f}$$

Reacción horizontal en un arco sometido a carga

Solicitación vertical: $V = 2047.5 \times 30 / 2 = 30.712 \text{ kg}$

Solicitación en el cable: $R = \sqrt{(76.781)^2 + (30.712)^2} = 82.695 \text{ kg}$ Carga solicitante

DIMENSIONADO DE LOS CABLES:


Considerando un coeficiente de seguridad de 2: Rmáx = 82.695 kg x 2 = 165.390 kg

Resistencia rotura 180 kg/mm²

Rmáx= 165.390 kg 2 Cables 6 x 36 de 38 mm alma textil Carga rot.: 172.000 kg

El coeficiente de seguridad resulta finalmente : Carga rot.: 172.000 kg = 2,08

Carga sol.: 82.695 kg

Ecuación de equilibrio en sentido horizontal:

Tensor: $T \times sen 32,0^{\circ} = R \times cos 21,8^{\circ}$ $T = 82.695 \times \frac{0,9285}{0.5300} = 144.872 \text{ kg}$

Ecuación de equilibrio en sentido vertical:

Columna: $C = T \times \cos 32,0^{\circ} + R \sin 21,8^{\circ} = 144.872 \times 0,848 + 82.695 \times 0,3714 = 122.854 + 30.713 = 153.567 \text{ kg}$

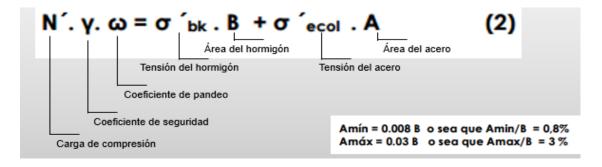
Dimensionamos el tensor:

$$T = 144.872 \text{ kg x } 2 = 289.744 \text{ kg}$$

4 Cables 6 x 36 de 36 mm alma textil

Resistencia rotura 180 kg/mm²

Alma Textil AT


Carga rot. = 4 x 77.000 kg= 308.000 kg

El coeficiente de seguridad resulta finalmente : Carga rot.: 308.000 kg = 2,126

Carga sol.: 144.872 kg

DIMENSIONADO DE LA COLUMNA:

Estructuras N2 P6 - T V III - DNC - Guía de estudio nro. 4 - Columnas de Hormigón Armado

Obk: Tensión del hormigón H21 según el reglamento: 175 kg/cm²

Sin considerar el pandeo:

Nos permite aproximarnos a una sección de columna por defecto. Del valor hallado con esta ecuación (sin considerar el pandeo) debemos elegir una sección que la supere. Luego verificamos considerando el pandeo

Ecuación de valores de rotura. Carga de rotura (valor mayorado con el corficiente de seguridad 2,5) y tensiones de rotura de los materiales

Fb (cm²) = s x b =
$$\frac{153.567 \text{ (kg) x 2,5}}{[175 \text{ (kg/cm²)} + 0,01 x 4200 \text{ (kg/cm²)}]} = 1769 \text{ (cm²)}$$

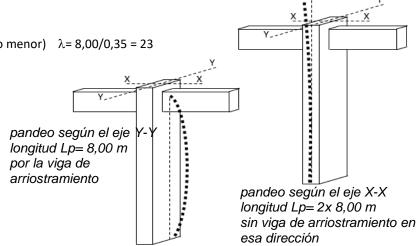
$$sección \\ necesaria$$

$$Fe (cm²) = 0,01 x 35 x 70 = 24,5 \text{ cm²}$$

$$12 \varnothing 20 = 24,12 \text{ cm²}$$

Dimensionamos la columna: $\gamma \ge 2.5$ Coef. de seguridad

A= sección del acero $\mu_0 = A/B$ cuantía geométrica


B= sección del hormigón $\mu_0 = 1\%$

B= suponemos una sección de 35 x 70 cm B= 2450 cm² luego verificamos si anda

 λ = esbeltez λ = h(altura)/b(lado menor) λ = 8,00/0,35 = 23

Lc/bmin	3
15	1.00
20	1.08
25	1.32
30	1.72
35	2.28
40	3.00

para valores intermedios deberá interpolarse

Pandeo: s/x-x long.pandeo: Lp = 8,00 m (viga de arriostramiento) $\lambda = 800/35 = 23$ $\omega = 1,2$ s/y-y long.pandeo: Lp = 2 x L = 16,00 m (sin arriostram.) $\lambda = 1600/70 = 23$ $\omega = 1,2$

Considerando el pandeo:

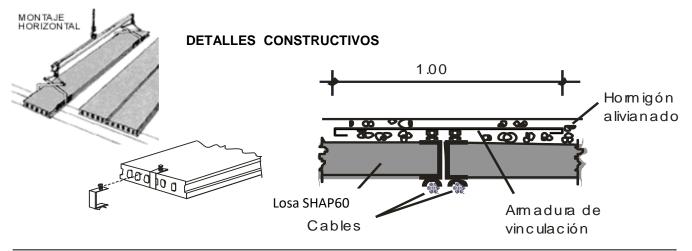
$$\mathbf{O}_{b} = \frac{C \text{ (col) x } \omega}{Fb \text{ (cm}^2)}$$
 < 80 kg/cm² = $\mathbf{O}_{b_{adm}}$ $\mathbf{O}_{b} = \frac{153.567 \text{ (kg) x 1,2}}{Fb = 2450 \text{ cm}^2}$ = 75 kg/cm² VERIFICA

Porqué aquí no consideramos el coeficiente de seguridad (γ =2,5)? Porque estamos comparando carga de servicio con tensiones admisibles. Si hubiéramos comparado con tensión de rotura, entonces debemos ir a la carga de rotura (C x γ)

Los cables de acero se identifican mediante la nomenclatura que hace referencia a:

- 1.- la cantidad de cordones.
- 2.- la cantidad (exacta o nominal) de alambres en cada cordón.
- 3.- una letra o palabra descriptiva indicando el tipo de construcción.
- 4.- una designación de alma, cualitativa o cuantitativa.

Esta nomenclatura simple es sumamente práctica y está internacionalmente normalizada para los cables convencionales.


6x7+1 AT (6 cordones por 7 alambres por cordón más un alma textil)

CABLE DE CONSTRUCCION PARA USO GENERAL: 6 x 36WS

6 x 36WS Construcción del cordón: 1+7+7/7+14 AT alma textil AA alma de acero

Diám.	Peso		180 kg/	mm2			200 kg/mm2					
nom.	AT AA		AT		AA		AT		AA			
mm	kg/100m	kg/100m	kN	kgf	kN	kgf	kN	kgf	kN	kgf		
9,5	34,3	37,7	52,6	5370	56,3	5700	64,6	6600	69,8	7100		
11	45,9	50,6	70,6	7200	75,5	7700	77,9	7900	86,5	8800		
13	64,3	70,7	98,3	10000	106	10800	109	11100	118	12000		
14	74,5	82	114	11600	124	12600	127	12900	137	13900		
16	97,3	107	149	15200	161	16400	166	16900	179	18200		
18	123	135	189	19200	204	20800	209	21300	226	23000		
19	137	150	211	21500	227	23100	233	23800	252	25700		
20	152	167	234	23800	252	25600	259	26400	279	28400		
22	184	202	282	28700	304	31000	313	31900	338	34500		
24	219	241	336	34200	363	36900	372	37900	402	41000		
26	257	283	395	40100	425	43300	437	44600	472	48100		
28	298	328	458	46600	493	50300	507	51700	547	55800		
30	342	376	526	53600	566	57700	544	55500	587	59900		
32	389	428	598	60800	644	65700	662	67500	715	72900		
35	466	512	715	72900	771	78600	792	80800	852	86900		
36	493	542	757	77000	816	83100	838	85500	907	92500		
38	549	604	843	86000	887	90500	934	95300	1010	103000		

